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Abstract. For lattice sites at integer values along the line let the probability of a bond 
between sites m and n be p/lm-n(‘, m f n ,  O s p < l ,  l < s s 2 .  We prove that for 
p < p:B’ = 1/24‘( s) there is no infinite cluster and that for s > 2 there is never an infinite 
cluster. 

Long range percolation in one dimension has been considered by Zhang er a1 (1983). 
The sites are the integers (0 ,  *l, . . .) and for two sites m and n the probability that 
there exists a bond between them is p / ( m  - nls with p and s parameters and 0 6 p S 1. 
If this problem should turn out to be similar to that of long range interactions for the 
one-dimensional Ising model (Kac 1978), then the interesting range of s would be 1 
to 2 and one could hope to have a one dimensional but nevertheless non-trivial model 
for the study of percolation. Define pc to be the critical value for the formation o 
infinite clusters. In this paper we show that there is no infinite cluster for p<pLB’ = 
1/2[(s) where p:B’ is the critical value on an appropriate Bethe lattice model that we 
define below and [( s) is the Riemann zeta function. Thus pc 3 p:B’ > 0 for s > 1. Then 
if there is a regime in which infinite clusters do exist this problem will indeed have a 
non-trivial transition. Our result differs from that of Zhang et a1 (1983) who claim 
that pc = 0 for 1 < s < 2, i.e. that there is an infinite cluster for any non-zero p.  We 
also prove that for s > 2 and p < 1 there is no infinite cluster. In passing we mention 
that preliminary Monte Carlo results suggest that the transition is fairly close to the 
Bethe lattice bound for s not close to 2. 

The Bethe lattice model that we use for comparison is defined as follows. Instead 
of the usual finite number of branches emanating from each site we have a countable 
infinity. For each of these branches there is probability a, ( n  = 0, * 1, *2, . . . , 0 S a, S 

1) that it contains a bond connecting the sites at its ends. It is not difficult to show 
(see appendix) that there is an infinite percolating cluster on this lattice if and only if 
Za,>l so that the critical value is Xa,=l. For comparison to the long range 
percolation model we shall take a, =p/ ln l s ,  n # 0,  a, = 0. The critical value of p is 
therefore p p ’  = 1/2[(s) where [(s) =Z:=p=, l /ns ,  the Riemann zeta function. (This 
also turns out to be the critical value for a mean field theory for the one-dimensional 
model.) 

In order to use the Bethe lattice for comparison we imagine that clusters are built 
on the long range model in the following way. We seek the cluster connected to the 
origin and to this end check the entire lattice for bonds between site 0 and site k, 
k = * l ,  *2,.  . . . Suppose there is success at sites kl, k2,. . . , kN. For each of these 
sites we check all possible bonds to other lattice sites but do not check whether they 
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are connected to each other since this has no effect on the ultimate cluster constituents. 
Again for all the new sites we check their possible connections, not testing each other 
or sites incorporated at previous stages. The origin is then part of a finite cluster if 
and only if this process terminates. 

The foregoing procedure, although describing long range percolation on a line, is 
quite similar to the way one would check for an infinite cluster on the Bethe lattice. 
The only difference is that for each new site incorporated on the Bethe lattice a full 
collection of branches is tried. For the long range model many possible branches are 
eliminated, and in fact it is those with the highest probability of success that are 
preferentially eliminated since however slowly l / n s  drops off it does drop off. The 
bound is obtained by noting that if p is sufficiently small that the iterative procedure 
for the Bethe lattice always (in probability) terminates (i.e. p < p:B' = 1/24'(s)) then 
for the long range model it surely always terminates. 

To prove our contention that for s > 2, p < 1, there is no infinite cluster we consider 
the question of how many bonds cross some particular point on the line. Specifically, 
define Aij to be a random variable taking the value 1 if there is a bond connecting i 
to j ,  zero otherwise. (Thus (Aij) = p / l i  - jl', i # j . )  Let T (  k )  be-the number of bonds 
crossing the point k + $ ,  that is 

T ( k )  = A, 
i >  k 
js  k 

A value of k for which T (  k) = 0 would interrupt any putative infinite cluster. Moreover, 
a finite density of such points would prevent the existence of infinite clusters, however 
exotic (cf Newman and Schulman 1981). However, it is easy to see that for any k the 
probability that T(  k )  = 0 is non-zero for s > 2 and p < 1.  Thus 

Prob(T(k)=O)=Prob n ( 1 - A i j ) = l  = n (1-Aij) = n 1-- 
( i > k  ) ( i > k  ) i > k (  ,l"jls) 

j s  k j s  k j s  k 

the last equality following from the independence of the Aij's. For p < 1 no individual 
factor in the product vanishes and the infinite product vanishes only if the sum 

j s  k 

diverges, which it does not for s > 2. It follows by translation invariance and ergodicity 
that there is a finite density of interruptions along the line. (Ergodicity can be 
established by replacing the pair labelled random variables by an equivalent set labelled 
by individual sites.) 

Appendix. Bethe lattice with an infinity of branches and varying probabilities 

The following demonstration is being provided because we do not know of any source 
in the literature. Arguments that are similar in spirit are given by Essam (1972, 1980). 
Let xo be a site on the Bethe lattice described above and let Bo be the random variable 
taking the value one if there is an infinite cluster lying downstream from xo (or in 
Essam's (1972) terminology, there is an open walk of infinite length starting from xo), 
zero otherwise. Then ( B o ) = p ,  the probability for the event just described. Let the 
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branches emanating from xo be labelled by n and the sites they reach be labelled x,,. 
Let A, be the random variable taking the value one in case the branch from xo to x,  
has a bond, zero otherwise; let (A,,) = an. Finally let B, take the value one if x, has 
an infinite cluster lying downstream of it, zero otherwise. The following relation is exact: 

All random variables on the right are independent of one another since each B, 
depends only on variables downstream of x, which are mutually disjoint and A, is 
upstream of x,. Moreover, the A,, are independent of one another. Therefore, taking 
expectation values we have 

All the (B,) equal p since from any given site the infinite progression downstream 
looks exactly the same. Therefore p satisfies 

1 - p = JJ (1 -pa,). 
n 

(3) 

The infinite product converges if Za, does, which we assume to be the case. p = 0 is 
always a solution and we seek the percolation threshold by looking for the condition 
that brings a non-trivial solution of (3) to zero. Expand (3) :  

For p # 0 and to lowest order in p this yields 

p =[(E a,) - l]/[finite positive number]. 

The denominator is finite since it is the double sum in (4) which is surely finite if I;a, 
is. This establishes Za, = 1 as the percolation threshold. 
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